Upper Muddy River Integrated Science Plan

Louis Provencher

SAVING THE LAST GREAT PLACES ON EARTH

Upper Muddy River Floodplain

Geomorphic Assessment Goals

- Review of the existing hydrologic, geologic, geomorphic, and groundwater data;
- 2. Characterize of river reaches along the main stem for channel geometry, slope, particle size distribution of streambed, sinuosity, and overbank flow; and
- 3. Provide recommendations for habitat and riverine restoration.

Integrated Science Plan Goals

- Integrate existing scientific data and initial direction from the CCMSHCP adaptive management process as it relates to key conservation targets;
- 2. Develop restoration goals for species and communities; and
- 3. Recommend long-term management practices for the Moapa Valley National Wildlife Refuge and other agency parcels on the upper Muddy River.

Desert Riparian Ecological Communities Groups that simplify analysis

- 1. Warm spring/stream aquatic species
- 2. Muddy River aquatic species
- 3. Riparian woodlands
- 4. Riparian shrublands
- 5. Riparian marshes and seeps
- 6. Mesquite Bosque

Warm Spring/Stream Aquatic Species

Moapa dace

Photo: P. Rissler

Muddy River Aquatic Species

Riparian Woodlands

Velvet Ash

Riparian Shrublands

Riparian Marshes and Seeps

Mesquite Bosque

Stresses to Ecological Systems

Water withdrawal

Figure 1. Groundwater and surface water monitoring, extraction, and diversion locations.

Modified from SNWA (2000)

Stresses to Ecological Systems River entrenchment

Loss of overbank flow during flood events

Stresses to Ecological Systems Invasion by non-native plant species

Stresses to Ecological Systems Invasion by non-native animal species

Red swamp crayfish

Bullfrog

Photo: Jim Harding

Stresses to Ecological Systems Unnatural fire

Stresses to Ecological Systems Land conversion & development

Stresses to Ecological Systems Sediment trapping

Restoration Options

- Low: minimum actions to recover the Moapa dace and the cheapest other actions
- Intermediate: all previous actions, complete channel reconstruction on BLM/Perkins property, and actions requiring conservation easements, but no major land acquisitions
- High: all restoration actions in addition to major land acquisitions and additional channel reconstruction

Restoration Option: Low

Prerequisite actions:

- 1. Agreements with private owners
- 2. Complete NEPA & other state/federal documentation for public lands & waterways
- 3. Partnership with Moapa River Indian Reservation
- 1. Construct fish barriers & remove tilapia
- 2. Progressive removal of saltcedar, Russian knapweed, and other non-natives plants
- 3. Revegetation with native plants
- 4. Targeted removal of fan palms in critical Moapa dace habitat (warm springs & outflow creeks)

Restoration Option: Intermediate

- 1. Define in-stream flow and buy senior water rights for beneficial wildlife use from willing sellers
- 2. All previous actions
- 3. On BLM/Perkins (with appropriate permits):
 - Add coarse substrate to improve fish spawning
 - Remove flood/sediment control barriers
 - Restoration/construction of wetlands
 - Complete channel reconstruction or small scale channel reconstruction (cheaper) or excavation of inset floodplain (most expensive)

4. Development of public use areas at MVNWR

Restoration Option: Intermediate (continued)

New prerequisite actions: Conservation easements from willing sellers

- 1. Add coarse substrate to improve fish spawning
- 2. Preservation of existing communities
- 3. Restoration/construction of wetlands
- 4. Reconnecting and reconstructing warm springs complex in historic Moapa dace habitat (tilapia removal required)
- 5. Small scale channel reconstruction
- 6. Excavation of inset floodplain

Restoration Option: High

- 1. All previous actions with or without #2
- **2. New prerequisite actions**: Property acquisitions from willing sellers

Complete channel/floodplain reconstruction in one more river reach

Future Steps

- The fate of the upper Muddy River will depend on the vision and participation of local stakeholders
- Local restoration actions are already in progress
- Stakeholders will benefit from river restoration
- Decisions should be made soon because Moapa is changing and its water is highly coveted
- Funding is available to implement some restoration actions